Electron Cooling in the Accumulator

Dave McGinnis

Install Electron Cooling in the Accumulator AP50 Pit

- A50 Straight Section was used for the E835 detector
 - > Straight section no longer used for anything
 - Large pit beneath beam pipe (~4ft below floor level)
 - > Counting room no longer used
 - > AP50 Drop hatch available
- 15 meters of straight section between Q1's
 - > Zero dispersion
 - ➤ Lattice functions could be modified with Q1,Q2,Q3 settings

Install Electron Cooling in the Accumulator AP50 Pit

Install Electron Cooling in the Accumulator AP50 Pit

Accumulator Momentum Aperture

Accumulator Momentum Aperture measured to be 206 mm at A314 scraper (J. Morgan - 5/19/03)

Accumulator Aperture with Electron Cooling

- Accumulator Aperture would be Divided into 3 Regions
 - \triangleright 208 mm required for 10π -mm-mrad Aperture
- Injection Region
 - > Beam is injected from the Debuncher every 1.5 seconds
 - \triangleright The transverse beam size is 5π -mm-mrad
 - > The momentum spread is 5 MeV
 - The Stacktail Region is shielded from the injection kickers by shutters

Accumulator Aperture with Electron Cooling

Stacktail Region

- > The beam is bunched with RF and decelerated from the injection orbit to the Stacktail deposition orbit
- The beam is stochastically stacked with a 4-8 GHz stacktail system and a 4-8 GHz Core system
- > The Stacktail is shielded from the high density core in the electron cooling region by means of a shutter in the stochastic cooling pickup region.
- > The beam is transversely cooled from 5 to 1 π -mm-mrad with a stacktail betatron cooling
- The momentum aperture of the entire stacktail region is 43.5 MeV
- > The stacktail system fills 10 eV-sec (6 MeV) every 55 minutes

Stacktail Performance with an Input Flux of 90x1010 pbars/hr

4-8 GHz High Dispersion Pickups

Average Signal to Noise for 100x10¹⁰ Particles (3-05-03)

Accumulator Aperture with Electron Cooling

Electron Cooling Region

- > Once 10 eV-sec of the core is filled up:
 - The Stacktail is gated off
 - The shutter to electron cooling is opened
 - The stochastic core is bunched and decelerated to the deposition orbit of the electron cooling region
 - The electron cooling shutter is closed and stochastic stacking is restarted.
 - Electron Cooling Rate 11 eV-Sec/hr (6.8 MeV/hr)

Advantages

- Machine circumference
 - > 7x smaller than Recycler
- No Rapid transfers
 - > No beam loss
 - > No transverse emittance dilution
 - > No longitudinal emittance dilution
 - > No waiting for transfer
- Electron cooler can be placed closer to ring
 - > 8 GeV beam only in Accumulator
 - > Shielding requirements much less
- Accelerator Performance
 - > Vacuum
 - · Ring Size
 - · Equipment
 - Pumping speed
 - Bakeout system
 - > Aperture
 - > No Main Injector ramps to contend with

Disadvantages

- Stacktail Betatron cooling
- Cooling section length
 - > Recycler -> 20 meters
 - > Accumulator > 12 meters
- Available longitudinal phase space

Things to Do

- Come up with a physics design for 4-8 GHz
 Betatron Cooling Derwent
- Verify 4-8 GHz stacktail envelope calculations
 with detailed Fokker-Plank Simulations Derwent
- Determine how to modify beta functions in A50
 Sector Werkema
- Electron Cooling Calculations Burov
- Come up with a design of 4-8 GHz Pickups -Sun, McGinnis
- Civil Construction Aspects Harms
- Schedule McGinnis, Nagaitsev